SYNTHESIS OF 2-CYANOMETHYLAZAHETEROCYCLES

Yu. M. Volovenko, E. V. Blyumin, T. V. Shokol, G. G. Dubinina, and F. S. Babichev

 $2-(\alpha-Aryloxyacetyl)$ cyanomethyl-, $2-(\alpha-I-adamantylacetyl)$ cyanomethyl-, $2-(\alpha-adamantoyl)$ cyanomethyl-, and $2-(\alpha-I-naphthylacetyl)$ cyanomethylazaheterocycles have been synthesized by treating 2-cyanomethylazaheterocycles with carboxylic acid chlorides. The 2-cyanomethylbenzimidazoles exist in the enaminoketone form. The biological activity of the synthesized compounds was studied and substances possessing fungicidal activity discovered.

We have previously reported the reaction of 2-cyanomethylazaheterocycles I₇IV with anhydrides and with aliphatic, aromatic, and heterocyclic acid chlorides [1-3]. However, acyl derivatives containing aryloxymethylene and adamantyl groups in the acyl residue have not previously been prepared.

. It is known that aryloxyacetic acids are used as powerful pesticides [4], hence it might be expected that the compounds synthesized by us are potentially biologically active.

Reaction of compounds I-IV with the acid chlorides of aryloxyacetic, 1-adamantylcarboxy, 1-adamantylacetic, and 1-naphthylacetic acid Va-i in the presence of base give $2-(\alpha-RCO)$ cyanomethylazaheterocycles VIa-i, VIIa-e, g-i, VIIIa-i, and IXa-e, g, h.

I, VII a-i . X = CH=CH=; II, VII- a-e, g-i X = NH; III, VIII a-i X = NCH3; IV, IX a-e, g, h X = S; V—IX a R = C6H5OCH2; bR = 4-CH3C6H4OCH2; cR = 4-C2H5C6H4OCH2; dR = 4-ClC6H4OCH2; eR = 2,4-Cl2C6H3OCH2; fR = 2,4,5-Cl3C6H2OCH2; gR = 1-adamantyl methylene; iR = 1-adamantyl

In all of the examples studied by us only the C-acyl derivatives were obtained (see Table 1). The compounds prepared can exist in three tautomeric forms: A, B, and C.

In the PMR spectra of acyl derivatives VIa-i, VIIIa-i, and IXa-e, g, h recorded in DMSO-D₆ there is observed a singlet at 13.2-16.0 ppm for a proton contained in a chelated ring, the signal disappearing on shaking the sample with D_2O .

T. G. Shevchenko University, Kiev 252033. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 4, pp. 520-522, April, 1997. Original article submitted May 31, 1996.

TABLE 1. Parameters for 2-(α -R)Cyanomethylazaheterocycles VIa-i, Va-e, g-i, VIIIa-i, IXa-e, g, h

Com- pound	Empirical formula	mp, °C	Found, %			Calculated, %		
			N	CI	s	N	Cl	s
VIa	C19H14N2O2	187,5	9,27			9,27		
VIb	C20H16N2O2	168	8,95			8,86		
VIc	C21H18N2O2	156157	8,70			8,48		
VId	C19H13ClN2O2	208,5	8,34	10,70		8,32	10,53	
VIe	C19H12Cl2N2O2	218	7,55	18,96		7,55	19,10	
VIf	C19H11Cl3N2O2	215*	7,08	26,30	ļ	6,91	26,22	
VIg:	C23H16N2O	150	8,38	}		8,33		
VIh	C23H24N2O	229230	8,35			8,37		
VIi	C22H22N2O	205*	8,54	[8,48	[
VIIa	C ₁₇ H ₁₃ N ₃ O ₂	300*	14,55	1		14,43		
VIIb	C18H15N3O2	>300*	13,85		1	13,76		
VIIc	C19H17N3O2	298*	13,28			13,16]	
VIId	C17H12CIN3O2	302*	12,88	10,75		12,89	10,88	
VIIe	C17H11Cl2N3O2	>300*	11,72	19,57	j	11,66	19,68	
VIIg	C21H15N3O	297298	12,77	ŀ		12,91		
VIIh	C21H23N3O	>300*	12,70]	ļ	12,60]	
VIIi	C20H21N3O	270271	13,08	ļ		13,16		
VIIIa	C18H15N3O2	204206	13,86	j	j	13,76)	
VШb	C19H17N3O2	208209	13,09	}		13,16		
VIIIc	C20H19N3O2	200201	12,75			12,61		
VIIId	C18H14CIN3O2	216217	12,48	10,51		12,37	10,43	
VIIIe	C18H13Cl2N3O	223224	11,69	19,72	İ	11,73	19,79	
VШf	C18H12Cl3N3O2	243244	10,35	25,98	İ	10,28	26,08	
VШg	C22H17N3O	234235	12,38	[[12,38	1	
VIIIh	C22H25N3O	202	12,21	j]	12,09	ļ	
VШi	C21H23N3O	212	12,56			12,60		
IXa	C17H12N2O2S	235237	9,02	ļ	10,47	9,09	J	10,4
IXb	C18H14N2O2S	237238	8,61		10,08	8,69		9,9
IXc	C19H16N2O2S	219	8,30	Í	9,65	8,33	ĺ	9,53
IXd	C17H11CIN2O2S	253	8,28	10,42	9,46	8,17	10,34	9,3
IXe	C17H10Cl2N2O2S	246247	7,55	18,92	8,45	7,40	18,80	8,49
IXg	C21H14N2OS	256257	8,30		9,54	8,18		9,36
IXh	C21H22N2OS	232233	8,12	[9,20	8,01	1	9,1:

^{*}Melts with decomposition.

The existence of tautomers B and C is supported by the presence of an absorption band at 2800-2600 cm⁻¹ in the IR spectrum corresponding to a chelate type intramolecular hydrogen bond. The absorption band for the nitrile group is seen at 2205-2195 cm⁻¹. The shift to long wave when compared to its usual position in the IR spectra can be explained by the existence of the acyl derivatives in forms B and C in the solid state also. Hence neither in the solid nor the solution state is the ketone form observed.

From their PMR spectra it appears that VIIa-e, g-i exist in the enamino ketone form C.

The spectra recorded in DMSO- D_6 show both the symmetrical multiplet for the phenylene protons of the benzimidazole at 6.8-7.6 ppm and a narrow two proton singlet at 12.5-13.2 ppm, disappearing on addition of D_2O .

The compounds prepared are crystalline materials stable on storage. However, on heating to their melting point many of them decompose.

Biological testing has shown that compounds IXe, VIi, and VIIIg are active against *Phytophthora infestans*, VIIIe against *Erisyphe graminis*, and VIIId against *Septoria nodorum*.

EXPERIMENTAL

Monitoring of the course of the reaction and the purity of the compounds synthesized was performed chromatographically using Silufol UV-254 plates. IR Spectra were taken on a Pye Unicam SP-300 instrument for KBr tables.

PMR Spectra were recorded in DMSO- D_6 and CF₃COOD using a Bruker WP-100 instrument (100 MHz) and TMS internal standard. Chemical shift values were measured with an accuracy of 0.01 ppm.

2-(α-Aryloxyacetyl)cyanomethylazaheterocycles VIa-f, VIIa-e, VIIIa-f, IXa-e. Pyridine (0.81 ml, 0.01 mole) and the acid chloride Va-i (0.01 mole) were added to the 2-cyanomethylazaheterocycle I-IV (0.01 mole) in dioxane. The reaction mixture was heated on a water bath for 2 h and the solvent evaporated *in vacuo*. The residue was washed with water, filtered, dried, and recrystalled from dioxane or isopropanol to give the product in 90-96% yield.

 $2-(\alpha-1-Adamanty|acety|)$ cyanomethylazaheterocycles VIe-IXh, $2-(\alpha-1-adamantoy|)$ cyanomethylazaheterocycles VIi-VIIIi, and $2-(\alpha-1-aphthy|acety|)$ cyanomethylazaheterocycles VIg-IXg were obtained similarly to the method reported above in 91-95% yields.

This work was financed by Dupont.

REFERENCES

- 1. F. S. Babichev and Yu. M. Volovenko, Khim. Geterotsikl. Soedin., No. 7, 1005 (1975).
- 2. F. S. Babichev and Yu. M. Volovenko, Ukr. Khim. Zh., 43, 41 (1977).
- 3. F. S. Babichev, Yu. M. Volovenko, and A. A. Oleinik, Khim. Geterotsikl. Soedin., No. 11, 1515 (1977).
- 4. N. N. Mel'nikov, The Chemistry of Pesticles [in Russian], Khimiya, Moscow (1968), p. 496.